146 research outputs found

    Performance indicators for the dynamics modeling and control of PEMFC systems

    Get PDF
    Society is gradually becoming aware that the current energy industry, based on the use of fossil fuels, is inefficient, highly polluting and has a finite supply. Within the scientific community, there are indications that hydrogen (H2) as an energy vector, obtained from renewable energy sources, can represent a viable option to mitigate the problems associated with hydrocarbon combustion. In this context, the change from the current energy industry to a new structure with a significant involvement of H2 facilitates the introduction of fuel cells as elements of energy conversion. Polymer Electrolyte Membrane Fuel Cells (PEMFC) are gaining increased attention as viable energy conversion devices for a wide range of applications from automotive, stationary to portable. In order to optimize performance, these systems require active control and thus in-depth knowledge of the system dynamics which include fluid mechanics, thermal dynamics and reaction kinetics. One of the main issues, with respect to proper control of these systems, is the understanding of the water transport mechanisms through the membrane and the liquid water distribution. The thesis is based on the publication of nine international journal articles that are divided into 4 sub-topics: Dynamic fuel cell modeling, fuel cell system control-oriented analysis, identification of parameters and performance indicators and finally, fault and failure detection and system diagnosis. In the sub-topic of Dynamic Fuel cell modeling, experimentally validated Computational Fluid Dynamics (CFD) modeling is used to relate the effects of the physical phenomena associated with fluid mechanics and thermal dynamics, that occur inside the fuel cell [Alonso, 2009][Strahl, 2011], to water distribution. However, since these CFD models cannot be directly used for control, control-oriented models [Kunusch, 2008][Kunusch, 2011] have been developed in parallel. As well, another study is done in [Serra, 2006] which includes a controllability analysis of the system for future development and application of efficient controllers. The results of the above mentioned studies are limited because either they do not incorporate an electrochemical model or the model is not experimentally validated. Moreover, these models do not take into account the voltage losses due to liquid water inside the fuel cell. Therefore, there is a need to properly relate the relevant effects of fluid mechanics and thermal dynamics, including liquid water, to the fuel cell voltage. Primarily, methodologies are needed to determine the relevant indicators associated to the effect of water on the fuel cell performance. The works published in [Husar, 2008] and [Husar, 2011] treats experimental parameter identification, mainly focused on water transport through the membrane and fuel cell voltage loss indicators respectively. The implementation of the indicators indirect measurement methodology provides an experimental way for the isolation of three main types of voltage losses in the fuel cell: activation, mass transport and ohmic losses. Additionally since these voltage loss indicators relate the fuel cell operating conditions to the fuel cell voltage, they can be utilized to calibrate and validate CFD models as well as employed in novel control strategies. On the other hand, to develop reliable systems, the controller should not only take into account performance variables during standard operation but should also be able to detect failures and take the appropriate actions. A preliminary study on failure indicators is presented in [Husar 2007] and fault detection methodologies are described in [de Lira 2011]. As a whole, the compilation of articles represented in this thesis applies a comprehensive experimental approach which describes the implementation of novel methodologies and experimental procedures to characterize and model the PEMFC and their associated systems taking into consideration control oriented goals.La societat s'està adonant que la indústria energètica actual, basada en l'ús de combustibles fòssils, és ineficient, molt contaminant i té un subministrament limitat. Dins de la comunitat científica, hi ha indicis que el hidrogen (H2) com vector energètic, obtingut a partir de fonts d'energia renovables, pot representar una opció viable per a mitigar els problemes associats amb la combustió d'hidrocarburs. En aquest context, el canvi de la indústria energètica actual a una nova estructura amb una important participació de el hidrogen exigeix la introducció de les piles de combustible com elements de conversió d'energia. Les piles de combustible de membrana polimèrica (PEMFC) estan tenint cada vegada més atenció com a dispositius viables de conversió d'energia per a una àmplia gamma d'aplicacions com automoció, estacionàries o portàtils. Amb la finalitat d'optimitzar el seu rendiment, les piles PEM requereixen un control actiu i per tant un coneixement profund de la dinàmica del sistema, que inclou la mecànica de fluids, la dinàmica tèrmica i la cinètica de les reaccions. Un dels temes principals relacionat amb el control adequat d'aquests sistemes és la comprensió dels mecanismes de transport d'aigua a través de la membrana i la distribució d'aigua líquida. Aquesta tesi es basa en nou articles publicats en revistes internacionals que es divideixen en 4 subtemes: la modelització dinàmica de piles de combustible, l'anàlisi orientada al control del sistema, la identificació de paràmetres i d’indicadors de funcionament i, finalment, la detecció de fallades i la diagnosi dels sistemes. En el sub-tema de la modelització dinàmica de piles PEM, la modelització basada en la Dinàmica de Fluids Computacional (CFD) amb validació experimental s'ha utilitzat per a relacionar els efectes dels fenòmens físics de la mecànica de fluids i de la dinàmica tèrmica que es produeixen dintre de la pila [Alonso, 2009] [ Strahl, 2011] amb la distribució d'aigua. No obstant això, com aquests models CFD no poden ser utilitzats directament per al control, s'han desenvolupat models orientats a control [Kunusch, 2008] [Kunusch, 2011] en paral·lel. A més, en un altre estudi [Serra, 2006] s'inclou una anàlisi de control·labilitat del sistema per al desenvolupament i aplicació futurs de controladors eficaços. Però els resultats dels estudis esmentats anteriorment són limitats, ja sigui perquè no incorporen un model electroquímic o bé perquè no han estat validats experimentalment. A més, cap dels models té en compte les pèrdues de tensió degudes a l'aigua líquida dins de la pila de combustible. Per tant, hi ha una necessitat de relacionar adequadament els efectes rellevants de la mecànica de fluids i de la dinàmica tèrmica, incloent l'aigua líquida, amb el voltatge de la pila de combustible. Principalment, són necessàries metodologies per a determinar els indicadors rellevants associats a aquest efecte de l'aigua sobre el rendiment de la pila de combustible. Els treballs publicats en [Husar, 2008] i [Husar, 2011] tracten la identificació experimental de paràmetres, centrada en el transport d'aigua a través de la membrana i els indicadors de pèrdua de tensió, respectivament. L'aplicació d'una proposta de metodologia de mesura indirecte dels indicadors permet l'aïllament dels tres tipus principals de pèrdues de voltatge en la pila de combustible: l'activació, el transport de massa i les pèrdues ohmiques. Aquests indicadors de pèrdua de tensió relacionen les condicions d'operació amb el voltatge de la pila de combustible i per tant poden ser utilitzats per a calibrar i validar models CFD, així com per a definir noves estratègies de control. D'altra banda, per a aconseguir sistemes fiables, el controlador no només ha de considerar els indicadors de funcionament de l'operació normal, sinó que també ha de detectar possibles fallades per a poder prendre les accions adequades en cas de fallada. Un estudi preliminar sobre indicadors de fallades es presenta en [Husar 2007] i una metodologia de detecció de fallades completa es descriu en [Lira de 2011]. En el seu conjunt, el compendi d'articles que formen aquesta tesi segueix un enfocament experimental i descriu la implementació de noves metodologies i procediments experimentals per a la caracterització i el modelatge de piles PEM i els sistemes associats amb objectius orientats al control eficient d'aquests sistemes.La sociedad se ésta dando cuenta de que la industria energética actual, basada en el uso de combustibles fósiles, es ineficiente, muy contaminante y tiene un suministro limitado. Dentro de la comunidad científica, hay indicios de que el hidrógeno (H2) como vector energético, obtenido a partir de fuentes de energía renovables, puede representar una opción viable para mitigar los problemas asociados con la combustión de hidrocarburos. En este contexto, el cambio de la industria energética actual a una nueva estructura con una importante participación de H2 exige la introducción de pilas de combustible como elementos de conversión de energía. Las pilas de combustible de membrana polimérica (PEMFC) están ganando cada vez más atención como dispositivos viables de conversión de energía para una amplia gama de aplicaciones como automoción, estacionarias o portátiles. Con el fin de optimizar su rendimiento, las pilas PEM requieren un control activo y por lo tanto un conocimiento profundo de la dinámica del sistema, que incluye la mecánica de fluidos, la dinámica térmica y la cinética de las reacciones. Uno de los temas principales relacionado con el control adecuado de estos sistemas, es la comprensión de los mecanismos de transporte de agua a través de la membrana y la distribución de agua líquida. Esta tesis se basa en la publicación de nueve artículos en revistas internacionales que se dividen en 4 sub-temas: el modelado dinámico de pilas de combustible, el análisis orientado a control del sistema, la identificación de parámetros e indicadores de desempeño y, por último, la detección de fallos y la diagnosis. En el sub-tema de la modelización dinámica de pilas PEM, el modelado basado en Dinámica de Fluidos Computacional (CFD) con validación experimental se ha utilizado para relacionar los efectos de los fenómenos físicos de la mecánica de fluidos y la dinámica térmica que se producen dentro de la pila [Alonso, 2009] [ Strahl, 2011] con la distribución de agua. Sin embargo, como estos modelos CFD no pueden ser utilizados directamente para el control, modelos orientados a control [Kunusch, 2008] [Kunusch, 2011] se han desarrollado en paralelo. Además, en otro estudio [Serra, 2006] se incluye un análisis de controlabilidad del sistema para el futuro desarrollo y aplicación de controladores eficaces. Pero los resultados de los estudios mencionados anteriormente son limitados, ya sea porque no incorporan un modelo electroquímico o bien porque no son validados experimentalmente. Además, ninguno de los modelos tiene en cuenta las pérdidas de tensión debidas al agua líquida dentro de la pila de combustible. Por lo tanto, hay una necesidad de relacionar adecuadamente los efectos relevantes de la mecánica de fluidos y la dinámica térmica, incluyendo el agua líquida, con la tensión de la pila de combustible. Principalmente, son necesarias metodologías para determinar los indicadores relevantes asociados al efecto del agua sobre el rendimiento de la pila de combustible. Los trabajos publicados en [Husar, 2008] y [Husar, 2011] tratan la identificación experimental de parámetros, centrada en el transporte de agua a través de la membrana y los indicadores de pérdida de tensió, respectivamente. La aplicación de una metodología propuesta de medición indirecta de los indicadores permite el aislamiento de los tres tipos principales de pérdidas de tensión en la pila de combustible: la activación, el transporte de masa y las pérdidas óhmicas. Éstos indicadores de pérdida de tensión relacionan las condiciones de operación con la tensión de la pila de combustible y por lo tanto pueden ser utilizados para calibrar y validar modelos CFD, así como para definir nuevas estrategias de control. Por otro lado, para conseguir sistemas fiables, el controlador no sólo debe considerar los indicadores de desempeño de la operación regular, sino que también debe detectar posibles fallos para poder tomar las acciones adecuadas en caso de fallo. Un estudio preliminar sobre indicadores de fallos se presenta en [Husar 2007] y una metodología de detección de fallos completa se describe en [Lira de 2011]. En su conjunto, el compendio de artículos que forman esta tesis sigue un enfoque experimental y describe la implementación de nuevas metodologías y procedimientos experimentales para la caracterización y el modelado de pilas PEM y los sistemas asociados con objetivos orientados al control eficiente de estos sistemas

    Load profile effect on durability of proton exchange membrane fuel cells

    Get PDF
    Proton Exchange Membrane Fuel Cells (PEMFC) are a promising technology for substitution of hydrocarbon powerdrives and battery based electrical supply systems. However, below-required durability is still an important factor that hinders its widespread use, thus, novel operating approaches are required to surpass this shortcoming. The present abstract presents a line of research directed towards the of analysis and definition of load profile characteristics in order to design controllers and operation strategies that optimize cell efficiency and durability. Degradation of the catalyst layer, commonly composed of platinum supported on carbon (Pt/C), mainly due to platinum loss by oxidation/dissolution and the resulting reduction of Electrochemical Active Surface Area (ECSA), is the main issue reducing the durability of PEMFC.Peer ReviewedPostprint (author's final draft

    Water transport study in high temperature fuel cell stack

    Get PDF
    This work presents analysis of water transport phenomena in the 120 Wel high temperature PEM fuel cell stack. Phosphoric acid doped PBI membranes are known for their abilities to work with dry gases; however water in the electrolyte still plays an integral role in the proton conduction mechanism. The presence of water in the membrane increases proton conductivity, however at high operating temperatures in the anhydrous environment phosphoric acid can dehydrate consequently lowering its conductivity. Therefore, understanding of water transport in the PBI- H3PO4 membranes is important as it can explain certain phenomena inside the cell. Tests have shown that water transport from cathode to anode due to water accumulation rises almost linearly with current density while decreases with cathode stoichiometry. Water transport seems to be independent of operating temperature. Also, in some cases, reverse flow water transport (from anode to cathode) appears to take place near the outlet. Ohmic resistance was also found to decrease slightly with an increase in current density and lower stoichiometries.Peer ReviewedPostprint (author’s final draft

    Propulsión del Segway RMP 200 mediante pilas de combustible tipo PEM

    Get PDF
    Presentado al III Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries celebrado en Zaragoza del 27 al 30 de junio de 2011.Utilizando las últimas innovaciones en las tecno-logias de pilas de combustible y en el de almacenamiento de hidrogeno disponibles en el mercado, en este trabajo se pretende equiparar las prestaciones de un prototipo a las de un robot autónomo basado en la plataforma Segway RMP200. Mediante la utilización de pilas PEM el sistema pretende satisfacer las actuales prestaciones que ofrecen las baterías del vehículo Segway y proporcionar diferentes niveles de alimentación a los dis-positivos del robot (230VAC para PCs, 24VDC y 12VD para sensores y motores, 5VDC), los cuales son equiparables a los consumos de la propulsión del robot.Subvencionado con el proyecto CICYT DPI2010-15274 del Gobierno de España.Peer Reviewe

    Nonlinear distributed parameter observer design for fuel cell systems

    Get PDF
    This paper presents the development of a nonlinear state observer to estimate the different gas species concentration profiles in a Proton Exchange Membrane Fuel Cell energy system. The selection of the estimated states follows functionality and fuel cell performance criteria. The implementation is based on the finite element discretisation of a fuel cell distributed parameter model. Forward and backwards discretisation of the partial derivative equations is performed to take advantage of the boundary conditions of the problem and also to apply lumped systems theory in the synthesis procedure of the observer. A second-order sliding-mode super-twisting corrective input action is implemented to reduce the estimation error to zero in a finite amount of time. The sliding-mode control approach grants a suitable corrective action without incrementing the model-dependency of the observer. Simulation results are presented to show the performance of the proposed observer of the fuel cell internal states and to extract conclusions for future research work.This work is partially funded by the Spanish national MICINN project DPI2011-25649, as well as by the 7th Framework Programme of the European Commission in the context of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) through the project PUMA-MIND FP7 303419.Peer Reviewe

    Experimental decoupling of single cell polarization losses

    Get PDF
    Trabajo presentado al V Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries celebrado en Tenerife (España) del 5 al 8 de julio de 2015.The decoupling of the current sweep with the Ohmic resistance is a very powerful tool to determine the magnitude of the voltage losses inside of a fuel cell. In a time frame of seconds, the fuel cell can be diagnosed and critical information on the state of the membrane, catalyst and diffusion layer can be assessed. The losses determined by this technique are the Ohmic, mass transport and activation. With this technique flooding and dry can be isolated and degradation studies can be made. Finally, this technique can be applied to a real system were this data can be used to improve control strategies for performance and durability when integrated in to a model based controller.This work is partially funded by the Spanish national MICINN project DPI2011-25649, as well as by the 7th Framework Programme of the European Commission in the context of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) through the project PUMA-MIND FP7 303419.Peer Reviewe

    Study of hydrogen purge effects on performance and efficiency of a PEM fuel cell system

    Get PDF
    Presentado al V Congreso Nacional de Pilas de Combustible celebrado en Madrid del 21 al 23 de noviembre de 2012.[EN]: Experimental analysis and CFD modeling is used in this work to analyze system efficiency related to hydrogen purge based water management in an open-cathode PEM fuel cell system. Excess water in a dead-ended anode decreases hydrogen concentration at the active catalyst surface and thus causes fuel cell performance losses. Purging the anode with hydrogen removes water and nitrogen that diffused through the membrane but also means wasting energy and thus decreasing overall system efficiency. Experiments with a 100W open-cathode stack have revealed that the need for a hydrogen purge strongly depends on the operation conditions and the state-of-health of the fuel cell and therefore the decision to perform a purge has to be evaluated online. A dynamic 2D CFD model of a single cell within the stack is used to investigate water distribution and transport within the cell before, during and after performing a purge at different operating conditions, linked to cell performance. Moreover, the model is capable of studying water transfer dynamics across the membrane and along the channel, including liquid water saturation. Altogether, the presented experimental and modeling work helps to improve the understanding of water transport in a PEM fuel cell and thus facilitates the development of strategies for increasing system efficiency and optimizing the water management by properly controlling the hydrogen purge.[ES]: Análisis experimental y modelado CFD se utiliza en este trabajo para analizar la eficiencia del sistema relacionado con la gestión del agua basada en purgas de hidrógeno en un sistema cátodo-abierto de pilas de combustible tipo PEM. El exceso de agua en el ánodo con la salida cerrada disminuye la concentración de hidrógeno en la superficie del catalizador y por lo tanto provoca pérdidas de rendimiento. Purgar el ánodo con hidrógeno elimina el agua y el nitrógeno que difunde a través de la membrana, pero también significa una pérdida de energía y por lo tanto disminuye la eficiencia global del sistema. Experimentos con un stack de 100W han revelado que la necesidad de una purga de hidrógeno depende fuertemente de las condiciones de operación y el estado de salud de la pila de combustible y por lo tanto la decisión de realizar una purga tiene que ser evaluado en línea. Un modelo dinámico CFD de 2 dimensiones de una sola célula dentro de la pila se utiliza para investigar la distribución y el transporte del agua dentro de la célula antes, durante y después de realizar una purga en diferentes condiciones de funcionamiento, ligados al rendimiento de la célula. Por otra parte, el modelo es capaz de estudiar la dinámica de transferencia de agua a través de la membrana y a lo largo del canal, incluyendo la saturación de agua en estado líquido. En total, el trabajo experimental y de modelado ayuda a mejorar la comprensión de transporte de agua en una pila de combustible tipo PEM y por lo tanto facilita el desarrollo de estrategias para aumentar la eficiencia del sistema y la optimización de la gestión del agua para controlar la purga de hidrógeno de manera adecuada.This work is partially funded by the project of CICYT DPI2011-25649 MICINN.Peer Reviewe

    Nonlinear observation in fuel cell systems: a comparison between disturbance estimation and High-Order Sliding-Mode techniques

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper compares two Nonlinear Distributed Parameter Observers (NDPO) for the observation of a Proton Exchange Membrane Fuel Cell (PEMFC). Both NDPOs are based on the discretisation of distributed parameters models and they are used to estimate the state profile of gas concentrations in the anode and cathode gas channels of the PEMFC, giving detailed information about the internal conditions of the system. The reaction and water transport flow rates from the membrane to the channels are uncertainties of the observation problem and they are estimated throughout all the length of the PEMFC without the use of additional sensors. The first observation approach is a Nonlinear Disturbance Observer (NDOB) for the estimation of the disturbances in the NDPO. In the second approach, a novel implementation of a High-Order Sliding-Mode (HOSM) observer is developed to estimate the true value of the states as well as the reaction terms. The proposed observers are tested and compared through a simulation example at different operating points and their performance and robustness is analysed over a given case study, the New European Driving Cycle.Peer ReviewedPostprint (author's final draft

    State observers design for PEMFC systems

    Get PDF
    Trabajo presentado al Iberconappice 2014 (Congreso Iberoamericano de Hidrógeno y Pilas de Combustible) celebrado en Barcelona del 15 al 17 de octubre.[EN]: This work presents the development of a nonlinear state observer to estimate the values of the different gas species concentration profiles in a Proton Exchange Membrane Fuel Cell (PEMFC) energy system. The selection of the estimated states is based on the functionality and performance of the observer. The implementation is based on the discretization of a PEMFC distributed 1+1D model. Forward and backwards discretization of the partial derivative equations is performed to take advantage of the boundary conditions of the problem. A second-order sliding-mode control super-twisting corrective input action is implemented to reduce the estimation error to zero in a finite amount of time. Simulation results are presented to show the performance of the observer to estimate the values of the states and to extract conclusions for future research work.[ES]: Este trabajo presenta el desarrollo de un observador de estados no lineal para la estimación de los perfiles de concentraciones en un sistema de energía basado en una Pila de Combustible de Membrana de Intercambio Protónico (PEMFC). La selección de los estados a estimar está basada en la funcionalidad y desempeño del observador. Las ecuaciones en derivadas parciales son discretizadas en dos sentidos a partir de un modelo 1+1D para aprovechar las condiciones de contorno del problema. Una acción de correción basada en métodos deslizantes de segundo orden es implementada para reducir el error de estimación a cero en un periodo finito de tiempo. Se presentan resultados de simulación para mostrar el rendimiento del observador en la reconstrucción de los valores de los estados y para extraer conclusiones para futuro trabajo de investigación.This work has been partially funded by the Spanish National Project DPI2011-25649 and the European project PUMA MIND SPI-JTI-FCH 303419.Peer Reviewe

    Electrode structure effects on the performance of open-cathode proton exchange membrane fuel cells: A multiscale modeling approach

    Get PDF
    In this paper we present a new dynamic multiscale model of an open-cathode Polymer Electrolyte Membrane Fuel Cell (PEMFC). The model describes two-phase water transport, electrochemistry and thermal management within a framework that combines a Computational Fluid Dynamics (CFD) approach with a micro-structurally-resolved model predicting the water filling dynamics of the electrode pores and the impact of these dynamics on the evolution of the electrochemically active surface area (ECSA). The model allows relating for the first time the cathode electrode structure to the cell voltage transient behavior during experimental changes in fuel cell temperature. The effect of evaporation rates, desorption rates and temperature changes on the performance of four different electrode pore size distributions are explored using steady-state and transient numerical simulations. The results are discussed with respect to water management and temperature control.This work is partially funded by the national project MICINNDPI2011-25649, as well as by the 7th Framework Programme of the European Commission in the context of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) through the project PUMA-MIND FP7 303419.Peer Reviewe
    corecore